
Unitary representations, branching rules and matrix elements for the non-compact symplectic

groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 939

(http://iopscience.iop.org/0305-4470/18/6/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 939-953. Printed in Great Britain 

Unitary representations, branching rules and matrix elements 
for the non-compact symplectic groups 

D J Rowet, B G Wyboume and P H Butler 
Physics Department, University of Canterbury, Christchurch I ,  New Zealand 

Received 18 September 1984 

Abstract. The complementarity of the symplectic and orthogonal groups is used to infer 
properties of the infinite-dimensional unirreps of the former from the character theory of 
the latter. The complete set of D+-series metaplectic unirreps of Sp(N, R )  is identified 
and branching rules are given for their restrictions to the maximal compact subgroup, 
U( N), developed in terms of the properties of Schur functions. A known algorithm for 
the evaluation of matrix elements of the Sp(3, R )  Lie algebra is extended to any Sp(N, R )  
and analytic expressions are given for important classes of unirreps and multiplicity free 
states. 

1. Introduction 

The development of algorithms for evaluating Kronecker products and branching rules 
for the various compact Lie groups has been the subject of many studies (cf Murnaghan 
1938, Weyl 1939, Littlewood 1940, Racah 1964, Hamermesh 1962, Judd 1963, Wyboume 
1970, Vanagas 1971, King 1975, Black et a1 1983, Black and Wybourne 1983 and 
references therein). 

Rather less is known about the non-compact symplectic groups which have been 
used extensively in recent times in the theory of nuclear collective motion (Arickx er 
a1 1979, Rosensteel and Rowe 1977, 1980, Park et a1 1984). 

Of major importance in character theory is the fact that the general linear group, 
GL( N), and the symmetric group, S,, are complementary in their actions on the tensors 
of an N-dimensional vector space. As a result the characters of the two groups are 
related and it is possible to understand many of their properties in terms of the well 
developed algebra of Schur functions (cf Littlewood 1940, Macdonald 1979). 

Moshinsky and Quesne (1971) (also Kashiwara and Vergne 1978) pointed out a 
similar complementarity of the Sp(N, R )  and O(n) actions on the states of the Nn- 
dimensional harmonic oscillator (or equivalently, in the Bargmann ( 1961 ) representa- 
tion, on polynomials in Nn variables). Whereas the GL(N) x S, complementarity 
relates the unirreps of compact continuous groups to those of finite groups, we show 
that the Sp(N, R )  x O ( n )  complementarity relates those of non-compact groups to 
those of compact groups. 

Character theory has primarily been used for compact groups because the non-trivial 
unirreps of a non-compact group are of infinite dimension. We show here that Sp( N, R )  
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characters are expandable as well defined infinite series of U ( N )  characters (or 
equivalently as Schur functions) and expressible in terms of already familiar infinite 
series (Littlewood 1940, King 1975, Black er a1 1983). 

We restrict consideration to the positive discrete (D,) series representations of the 
two-fold covering (metaplectic) groups. The D, unirreps of the Sp( N, R)  groups were 
identified by Godement (1958) and elaborated on by Rosensteel and Rowe (1977,1980). 

Matrix elements of the Sp( 1, R )  algebra have been known for some time (e.g. Barut 
1967). Matrix elements for Sp(3, R )  have been calculated numerically (Rosensteel 
1980, Rosensteel and Rowe 1983). Recently Castaiios et a1 (1984) gave analytic 
expressions for the associated class of (a, = a2 = a3) unirreps of Sp(3, R). Rowe et a1 
(1984), using the coherent state theory of Rowe (1984), then gave analytic matrix 
elements for any Sp(3, R )  unirrep whose Sp(3, R)JU(3) branching is multiplicity free. 
More generally Rowe (1984) gave an algorithm for the matrix elements for any D, 
unirrep of Sp(3, R) .  In this paper we give the natural extension of these results to any 
Sp( N, R )  algebra and use them to obtain analytic matrix elements for the a( l r ) ,  
r = 0, 1,2, . . . representations (to be defined in Q 3). 

2. The Sp(N, R )  algebra 

The Sp( N, R )  group is fundamentally the group of linear canonical transformations 
of a 2N-dimensional phase space. 

A convenient basis for CN, the complex extension of its Lie algebra, is a set 

{Av,Bij ,Ci j ; i , j=l  ,..., N} (2.1) 

where A, = Aji, B, = Bji are symmetric, where (C , )  is a basis for the U( N )  subalgebra, 
and which satisfy the commutation relations 

[ B,, Aik] = SirCkj -I- Sikc/j 8jrCki + 8jkC/i. 

A possible realisation of this basis, that exhibits Sp( N, R )  as the dynamical group 
of the harmonic oscillator, is given by 

Ai. = bfb t  B. .  = b.b. 
J ,  1J 1 P C ,  = !j(b:bj + bjbr). 

This realisation is too restrictive, however, for our purposes. 

(T,, 7 2 , .  . . , T ~ )  is defined by a lowest weight state ~ T L w )  satisfying 
Following Rosensteel and Rowe (l980), a discrete series representation T = 

Y(c , i ) lTLW)= TiITLw) 

Y ( c i J ) l T L w ) = o  i < j  

y(Bij)17L W )  = 0 for all i, j 

where y gives the action on the state space. The space of states is generated by the 
raising operators as usual. Note that [TL W )  is also a lowest weight state for the U( N) 
subalgebra. 
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Instead of U ( N )  labels ( T ) ,  it is more convenient to use labels a(A) where 

T ~ = ( T + A ~  f o r i =  1,2, .  , . , N (2.4) 

with U chosen such that 

A I  3 A 2  5. . .5 A N  3 0 (2.5) 

is a regular partition of integers. Note that among the set of equivalent labels a(A) 
for a representation ( T ) ,  there is one a m a x ( A m i n )  for which amax = TN and ACn = 0. 

In order that the representation a(A) of the algebra integrates to a representation 
of the Sp(N, R )  group, LT must be restricted to integer values (Godement 1958). We 
consider here also the representation of the two-fold covering (metaplectic) group, for 
which U can take half-integer values. However, we restrict to u m a x 3 0 ,  since as one 
can easily show, every representation with amax < 0 is contragredient to another with 
umax > 0. The amax > 0 representations constitute the D, series. Note that for unitarity, 
all matrix elements must satisfy 

(culr(B,j)lP>(Plr(A,j)lcu) 2 0. (2 .6)  

The above unitarity condition constrains the labels a(A) in accordance with the 
following important theorem, to be proved in P 5 ,  which confirms a conjecture by 
Kashiwara and Vergne (1978). 

Theorem 1. The Sp(N, R )  representation a(A) is unitary if and only if 

 if"'"^ N -  1 (2.7) 

where (1) =(I,, i2,. . .) is the partition conjugate to ( A ) .  Thus 1, is the number of 
parts Aj of ( A )  with Aj  2 i. 

We will describe representations that satisfy this constraint as ‘admissible’. Associ- 
ated with every integer or half-integer value of amax there will be a set of admissible 
representations of the D, series of Sp(N, R )  labelled as o(A). 

The characters for the admissible unirreps of the D, series of Sp(N, R )  will be 
designated as (a( A)).  Such a character labelling constitutes a ‘natural’ labelling scheme 
(Wybourne and Bowick 1977, King and Al-Qubanchi 1981) and, under 
Sp(N, R ) J U ( N ) ,  ( a ( A ) )  restricts to an infinite sum of U(N)  characters of which the 
leading term is given by 

(a(A))  4 E ~ { A } +  . . . (2.9) 
where E is just the one-dimensional character { 1 ”} of U( N) given by the determinant 
of the group element. Our objective is to find the subsequent terms of the sequence (2.9). 

3. The Sp(N, R )  J. U(N) branching rules 

According to the complementarity theorem of Moshinsky and Quesne (1971) and 
Kashiwara and Vergne ( 1978) the states of the 2aN-dimensional harmonic oscillator 
that belong to an O(2a)  unirrep also belong to an Sp(N, R )  unirrep. Furthermore, 
the irreps of the product group Sp(N, R )  XO(2a) always occur without multiplicity. 
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In terms of characters this implies (Kashiwara and Vergne 1978) a branching rule for 
the two fundamental unirreps (1/2(0)) and (1/2( 1)) of Sp(2aN, R )  under 

S P ( ~ ~ N ,  R )  .1 Sp(N, R )  XO(2a) 

(3.1) 

where [ f ( A ) ]  is the character of some unirrep of O(2a)  determined uniquely by ( A )  
and where S denotes the set of partitions that occur in this reduction. 

The U ( N )  content of an Sp(N, R )  unirrep a ( A )  is inferred by comparing the 
branching rules for 

Sp(2aN, R) J. Sp(N, R )  XO(2a) J. U(N)  XO(2a) 

and 

Sp(2aN, R )  3. U(2aN) 3. U(N)  xO(2a) .  

The U(2aN)  content of the simple harmonic oscillator in 2 a N  dimensions is well 
known. Under the restriction 

Sp(2aN, R )  3. U(2aN) 

(1/2(0)) + (1/2(1)) 3. &”2M (3.2) 

where M is the infinite S-function series (Black et a1 1983) 

M = C M  
m 

summed over all non-negative integers. 
The U(2oN) 3. U(N)  XU(20) 3. U(N)  xO(2a)  branching rules (King 1975) give: 

& ” 2 3 .  E U X & ” 2 J .  EUX(*1)”2 

M J. c (51 x{51 3. c (51 x[5/01 (3.3a) 
b c 

where 

D = (2) 0 M = { 8 )  
6 

is the infinite series (Black et a1 1983) of S-functions for which each partition ( 8 )  only 
involves parts which are even. From the definition of the S-function quotient (Little- 
wood 1940, p 108) and its relation with S-function products it follows that ( 3 . 3 ~ )  can 
be re-expressed as 

M 3. 1 {l} X { l )  .1 ~ { P D }  X b l .  
c P 

This is a key step in deriving the Sp(N, R )  3. U ( N )  branching rules. 
Combining (3.2) and (3.3) we obtain 

Sp(20N, R )  J. U( N) x O(2a) 

(1/2(0))+(1/2(1)) 3. c &“{PD1 X(*)””[Pl. 
P 

(3.3b) 

(3.4) 
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Comparing with (3.1), we obtain 

Sp( N, R )  x O(2a)  .1 U( N )  x O(2a)  

The partitions (6) and ( p )  in (3.3) are necessarily restricted in their number of 
parts by: 

bI c min( N, 2a) 

S; s min(N, 2a) .  (3.6) 

However, standard labels for O(2a)  unirreps are given by partitions having not more 
than U parts. Thus non-standard labels appear in the RHS of (3.5). 

Those non-standard labels, which arise in the restriction U(2a) JO(2a ) ,  can be 
related to standard labels by means of Newell’s (1951) modification rules or by an 
equivalent method of boundary hook removals (King 1975, Black et a1 1983). 

It follows that to each standard O(2a) label there is a sequence of equivalent 
non-standard labels having up to 2 a  parts. We call these sequences ‘signed sequences’. 

A systematic procedure for deriving the signed sequences is given in P4. The 
sequences for U c 5/2 are given in table 1 .  

Let A: denote the signed sequence having leading term ( A ) .  It follows from (3.5) 
that 

Hence we obtain 

[ f ( A ) I =  ( * ) ” ’ [ ~ l  (3.8) 

SP(N, R )  .1 U N )  

(a(A)) .1 &“{A:DL,N (3.9) 

and the branching rule 

where the subscript 2a,N indicates, that in the product of S-functions, only those 
terms are retained for which the corresponding partition label contains no more than 
2 a  and no more than N parts. 

It can be shown that if a3 N or if 2 a >  N and 1‘s max(2o - N, 0) then only the 
leading term ( A )  in A: will survive in (3.9). In such a case (3.9) simplifies to 

( d A ) )  L &“{ADIN. (3.10) 

2. From By way of example consider the unirreps ( 1  ( A  I ) )  of Sp( N, R )  with A I  
table 1 we have the signed sequence 

( A I ) :  = ( A I > - ( ~ I ~ )  

and hence from (3.9) we have the general result 

( l ( h I ) )  .1 EI{({A,I -{AJI)DI~,~ .  

( l ( A 1 ) )  .1 &l{AlD),, 

If N = 1 the result simplifies to 
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Table 1. Signed sequences for U S $ .  

A 1 2 2  

A 1 3 2  

A 1 2 2  
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while for N 3 2 

(1(2)) J. E1(({21-{22})D}2 

= ~'[ (2}+{31}+ (4}+{42}+ (51}+{6} +. . .] 
= (31 N - l }  + (421 N - 2 } +  ( 5  1 N - ' }  + (53 1 N - 2 }  + (621 N - 2 }  + (71 N - ' }  + . . . . 

In a similar manner we have for N 2 U and A I  3 2 

( 3 / 2 ( ~ ,  1 )) 5. &'/'[[{A, 1) -{A ~ 1 } 1 ~ 1 ~ .  (3.1 1) 

The results obtained for the Sp( N, R )  J. U( N) branching rules can also be used to 
develop procedures for calculating the Kronecker products of the unirrep of Sp( N, R )  
a subject we shall return to at a later time. 

4. Signed sequences 

In specifying all the inequivalent finite dimensional unirreps of O(2a) it is conventional 
following Littlewood (1940, p 227) to introduce standard labels by the identification 

[p] with ( C ; )  = (C ; ,C ; * . .  . ) = ( X I ,  i2.. .) if 1 , s  a 
(4.1) [ A I = { [  p]* with ( C ; )  = ( 2 a - i , ,  i2.. .) if a<X, S 2 a - i 2  

where [ p ]  and [p ] *  are associated unirreps differing only by a factor of det A = 51 in 
their images of a group element A of O(2a). If 20 is even and C;, = U then [ p ]  = [p]* 
and the unirrep is said to be self-associated. 

The standard labels [p ]  and [p]*  for characters of O(2a) are restricted to partitions 
( p )  into not more than a (or U-;) parts. The equivalent standard labels [A], defined 
by (4.1), are restricted by 1, + i, S 2a, showing an interesting parallel between the 
admissible O(2a) representations [ A ]  and the Sp( N, R) representations ( ~ ( h ) )  that 
are admissible by theorem 1. 

In 0 3 we encountered non-standard labels of O(2a) possessing up to 2a parts and 
these must be modified to produce standard labels. In particular we need to know 
what sequence of non-standard labels will yield a given [ A ]  ( ' [p]  or [ p ] * )  of O(20) 
upon application of the O(2a) modification rules. In this instance the modification 
rules for O(2a) as stated by Newel1 (1951) are most convenient. 

The two infinite S-function series denoted by C and G (Black et a1 1983) play a 
central role in Newell's analysis. They are defined 

( 4 . 2 ~ )  

(4.2b) 

where w y  and w,  are the weights of the partitions (y )  and (E)  respectively and r,, r, 
their corresponding ranks, defined for example in Wybourne (1970). (y )  is any partition 
in the Frobenius form 

) a2 . . .  
( y ) = (  a ,  a , - 1  a,-1 . . .  a,-1 

and (E)  is any self-conjugate partition. 
Let CO denote all odd-rank terms in the C-series and C" all even rank terms. 

Likewise let Go denote all odd-weight terms in G and G' all even-weight terms. The 
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first few terms of each series are as follows: 

C" = -(2} + (3 1) - (41 '} + { 5 1 '} - (614} + (43} + (7 1 '} - (8 16} - (5421} . . . 
C' = (0) - {32} + (43 1) - (5312} - (422} + (5421) - (5222} . . . 
G o =  { 1) -{21}+{312} -{413} -(33}-(61s}+{4321}+{716} -(53'12} -(4232}. . . 
G' = (0) - (2') + (32 l}  - (322} - (42 12} + (52 1') + (432 1) - (62 14} - (532 12} - (4222} . . 
Following Newell's (1951) results we can state: 

(i)  For U an integer all characters [ A ]  of O(2u) labelled by partitions having more 
than U parts vanish except for those that can be re-expressed as standard labels via 
the equivalences 

[AlA2.. . A,(C"),]=[AlA2.. . A,]* 

[ A I A Z . .  . A,(Ce),]=[AlA2.. . A,]. 

(4.3a) 

(4.3b) 

Here the series C" and C' are restricted to partitions of not more than U parts. 
(ii) For U a half-integer all characters [ A ]  of O(2u) labelled by partitions having 

more than U - f  parts vanish except for those that can be re-expressed as standard 
labels via the equivalences 

(4.3c) 

[ A I A ~ . .  . A , - ~ / Z ( G ' ) , + I / ~ I = [ A I ~ ~  Au-i/21. (4.3d) 

It is important to note that in using (4.3a)-(4.3d), partitions which are not in 
standard descending order may arise and these must be rearranged using the S-function 
modification rules (Littlewood 1940, Wyboume 1970). 

(I)  In any S-function two consecutive parts may be interchanged provided that 
the preceding part is decreased by unity and the succeeding part is increased by unity, 
the S-functions being thereby changed in sign. 

(11) In any S-function if any part exceed by unity the preceding part the value of 
the S-function is zero. 

(111) The value of any S-function is zero if the last part is a negative number. 
With the above provisos, equations (4.3a)-(4.3d) will rapidly lead to the determina- 

tion of the complete sequence of non-standard labelled O(2a) characters that are 
related to a given standard labelled character for a given value of U. 

By way of example consider the associated irrep [21]* of O(6). We have from 
( 4 . 3 ~ )  the signed sequence 

[ A i & .  . . ~ , - i ~ ~ ( G o ) o + i / 2 1 = [ ~ i ~ 2 ~ ~ ~  L - i / J *  

-[2 1021, +[2103 I], -[2 1041 2], [2104'] 

reordering the above partitions gives the signed sequence 

+[2 1'1, -[2' 1'3 

since the second and fourth terms vanish. From (4.36) we have associated with [21] 
the signed sequence 

[21], -[251]. 

Since for O(6) [212]* = [212], the sequence associated with [212] will contain terms from 
both (4.3a) and (4.36) giving the signed sequence 

[2i2], -[2412]. 
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These results and others like them may also be arrived at and checked by the use 
of modification rules involving the addition of certain boundary hooks to Young 
diagrams specified by partitions (King 1975, Black et a1 1983). 

As a consequence of the above results, for each a= amax and each ( A )  = ( A m i n )  
satisfying (2.8) the corresponding character [ A ]  ( = [ p ]  or [ p ] * )  of O(2a)  can be 
associated with a signed sequence (A: of partitions which serve as non-standard O(2u) 
labels involving up to 2 a  parts. The signed sequence A: to be associated with a given 
unirrep a ( A )  of Sp(N, R )  is found by relating ( A )  to a standard irrep [ p ]  or [p ] *  
through (4.1) and then using (4.3u)-(4.3d) to construct additional terms. Thus we 
obtain the branching rule (3.9) for all Sp( N, R )  representations that are admissible by 
theorem 1. 

It follows, by construction, that every admissible Sp(N, R )  unirrep is realised in 
the space of some 2aN-dimensional harmonic oscillator. However, a given Sp( N, R )  
unirrep (( 7 ) )  only occurs in the space of the 2"-dimensional oscillator for a particular 
value of U if [ A ] ,  defined by (2.4), is a standard O ( 2 a )  label by (4.1); i.e. if X I  +X,s2a.  
Thus, for example, the Sp(2, R )  unirrep 

((32))=(2(3))= (1(21)) 

occurs in the space of the eight-dimensional harmonic oscillator ( a  = 2) but not in the 
space of the four-dimensional harmonic oscillator ( a  = 1). 

Thus for the (3(21)) unirrep of Sp( N, R )  with N > 2, we have a = 3 and hence the 
signed sequence 

(21): = (21) - (251), 

and for (3(213)) with N > 4  

(2i3): = (2i3) - (23 

(2i2): = (2i2) - (24 

while for (3(212)) with N >  3 
1, 3 

In general the signed sequence will be of the form 

where the summation is over all relevant O(2a)  partition labels involving up to 2a  
parts and the coefficients gt: are either 0 or 1. The leading term in the seqyence A: 
will be ( A ) .  The second term in the sequence will have at least 20- - $, + 1 parts. The 
signed sequences for U S  5/2 are given in table 1. 

5. Sp(N, R )  matrix elements 

From the coherent state theory of the symplectic groups (Rowe 1984), one obtains a 
non-unitary realisation of the Sp(N, R )  algebra in the form 

U A , )  =[A, a:] ,  r( = ' l J  

r(Ctj) =Czj + (a+a)tj (5.1) 
where 

( u ; , ~ , ~ ; i , j = l ,  . . . ,  N )  
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are symmetric boson operators ( a ,  = aj i ) ,  satisfying 

[ aijy a :k1 = a i / a j k  + G i d j h  

and the (C,) are a basis for a U ( N )  algebra 

[a=,, @ I k l  = a j / @ i k  - a i k @ / j  

(5.2) 

( 5 . 3 )  

that commutes with the bosons; i.e. 

[@U, aikl=[Ci,, a/kl=O. (5.4) 

A=fTr[(C+ata)(Q=+ata)]-aTr(ataata)-f(N+ 1)  Tr(ata) ( 5 . 5 )  

A is a U ( N )  invariant operator, given by 

where we use matrix notation; e.g. Tr(ata) = Zo a$ji. 
The fact that r is indeed a realisation can be ascertained directly by checking that 

it satisfies all the Sp(N, R )  commutation relations (2.2). Thus we may dispense with 
any limitations implicit in the coherent state origin of (5.1). 

Let Vc(A) be the carrier space for a U ( N )  3 U( 1) x S U ( N )  unircep a ( h )  and let 
V, be the carrier space for a representation of the Weyl (boson) algebra. The product 
space 

x v w  (5.6) v;,"'= v,"(A) 
then carries a unirrep of the direct product unitary-Weyl algebra. Furthermore, if 
l o ( h ) L W )  is the U ( N )  lowest weight state and (0) is the boson vacuum, then 

b ( A ) L W  = la(A)LW)lO) (5.7) 

is the lowest weight state for the unitary-Weyl algebra. 
The boson raising operator at  is clearly a U ( N )  tensor of rank ( 2 ) ,  WRT the 

realisation r of U ( N ) c  Sp(N, R ) ,  defined by (5.1). Let x ( " ' ( a t )  be a suitably nor- 
malised polynomial in the raising operators of tensor rank ( n ) ,  where ( n )  is a partition 
with even parts; i.e. { n } E  D. Then an orthonormal basis for Vc:) is given by states 
of the form 

la(A)nawcr) = [ x ( " ) ( a t ) [ a ( A ) ) ] $ "  ( 5 . 8 )  
where 6 is a multiplicity index and Q labels a basis for the coupled U( N )  unirrep ( U ) .  

The U(N)-invariant operator A is conveniently diagonal in this basis with eigen- 
values 

(5.9) 

Now observe that the lowest-weight state la(h)Lw) is also a lowest weight state 
for the realisation r of the Sp( N, R )  algebra. It follows that Sp( N, R )  acts irreducibly 
on the subspace V $ ) c  Vc,") generated from the lowest-weight state l a ( A ) L W )  by 
the T(A) raising operators. A basis for VY:*) is obtained by eliminating from the Vz?) 
basis, ( 5 . 8 ) ,  all states for which 

[ X ( " ) ( ~ ( A ) ) I ~ ( A  ))I?' = 0. (5.10) 

If ( ~ ( h ) ) ~ ,  is the unitary-Weyl character for the unirrep a ( h ) ,  defined above, then 

(a(A))uw 5. E " { A D ) N *  (5.1 1 )  

from its construction, its U ( N )  content is given by 
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It follows that the removal of the redundant U(N)  subspaces to yield an irreducible 
Sp( N, R) representation space, corresponds precisely to the modification of the branch- 
ing rule, for U < N given by equation (3.10). 

For U <  N, the representation of Sp(N, R )  camed by V$’ is an example of a 
representation that is reducible but not fully reducible. The restriction to VsdA’ gives 
a fully reduced representation. 

To simplify notation, let a single index i = (ana) distinguish multiply occurring 
U(N)  unirreps in v,ql̂ ’. 

Theorem 2. If 

R ( iw ’) - R( j w  ) = 0 

for all 1 j w )  E Vr:A’ for which the SU( N) reduced matrix element 

(iw’lla+lljw) z o 
then the state liw’) is not in Vsd”’. 

ProoJ: Observe that I iw’) E VrdA) if and only if 

does not vanish for some Ijw)E V:dA’. 

The difference 

Aa( a d o ‘ ;  no)  = a( un’w’) -a( u n w )  

is evalutated directly from (5.9). Two situations occur 

(9 U ;  = wi + 2, n;=nk+2,  

AR=2wi-nk-2 i+k+1 

and 

(5.12) 

(5.13) 

(5.14) 

(i i)  wI=wi+ l ,  w j = w j + l ,  i # j ,  n j ,=nk+2,  
(5.15) 

It is significant that AR, unlike R, does not depend on N. The utility of theorem 2 
can now be illustrated. Consider an Sp(N, R )  unirrep u(A,l). For u 2  N, (3.10) gives 

(u(A,l))$ e‘({All})+{Al+2, I } + { A l +  1,2}+{Al+1, l’}+{A1,3)+{A121}+. . .). 

Now the {A ,21} component corresponds to the state 

AR = w i + w j  - nk - i -j+ k 

lu(Al 1)(2)w‘) with w ;  = A ,  + U, w ; =  a + 2 ,  w ;  = a+ 1. 

It can be reached by a raising operator only from the { A ,  I}  state, for which w 1  = A I  +U, 
w2 = U +  1, w3 = U. For these two states 

A R = 2 a - 3  

vanishes for U = 3. Thus one understands the removal of the contribution of this state, 
for a=;, in (3.11). 
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We now seek a test for unitarity. In the analysis of Rowe (1984), it was assumed 
a priori that the Sp( N, R )  representation u(A) was equivalent to a unitary representa- 
tion. Here, however, where we start with the non-unitary realisation (5.1), we have no 
guarantee of this. 

It nevertheless follows from Rowe (1984) that, if the Sp(N, R )  unirrep u(A) is 
equivalent to a unitary representation, we may make a transformation 

y ( x )  = K - ’ r ( X ) K ,  x E S P ( N  RI,  (5.16) 

with K = K’ Hermitian and U(N)  invariant, such that the action of y is unitary. The 
equation y(  B)’ = ?(A) ,  required for unitarity, then implies that K satisfies 

K2Q’K-’ = [A, ail. (5.17) 

Hence one has 

K 2  C Q ~ U J ,  [A, a; lK2aJ,  ,, 1J 

from which one derives the recursion relation for the matrix elements of K’ 

(5.18) 

where 
N ( I ) = C  (Iwla?,.a,,llw,=C nk(1) 

y k 

and where, in the definition of the SU( N )  reduced matrix elements, the SU( N) tensors 
at  and a are now normalised in the standard way 

[a,,aIl=fjp’Y p, v =  1, * .  * , $ N ( N +  1 ) .  

Theorem 3. If the Sp(N, R )  representation a(A) is unitary and AR(w‘,  w )  = 
Cl( i w ’ )  -R( j w )  is non-vanishing and independent of any multiplicity indices and if 

( i W ’ ~ ~ u + ~ / j w )  # 0 

then 
AR(w’,  w )  > 0. 

Proof: From (5.17) and the independence of An(@’, w )  on the multiplicity indices, we 
infer 

The LHS can be re-expressed 

L H S = ~  I ( iw’ I IKa’K- ’ I l jw)J’ ,  
r J  

showing that, under the conditions of the theorem, AR(w‘, w )  is strictly positive. 

Proof of theorem 1. First observe that any Sp(N, R )  irrep of the harmonic series is 
necessarily unitary because, in terms of the harmonic oscillator raising and lowering 
(boson) operators 

(bTi, b,,; v = 1,. . . ,2u, i = 1 , .  . . , N), 
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the Sp(N, R )  algebra is realised. 
2u 2 u  

" = I  u = l  
A,= c bl,bLj B ,  = bVibuj 

(5.19) 

which is manifestly unitary. Since, as observed in 0 4, the harmonic series contains 
all the (D+-series metaplectic) representations admissible by theorem 1 ,  it follows that 
all admissible representations are unitary. 

It remains to show that a representation a(A) that is not admissible is not unitary. 
We put a = amax and ( A )  = ( A m i n )  and consider the following two cases. 

( i )  
- -  
A I  = A 2  = r. 

The lowest weight U ( N )  state w = a(A) has 

w , = a + A n  W r +  I = a, n ,  = O .  

(Recall that r s  N - 1 for a = amax). If we evaluate AR(w',  w )  for 

~ : + l = w r + l + 2 ,  n {  = 2 ,  

we obtain from (5.14), 

AR(w',  w )  = 2 a  - 2 r  = 2 a  -Il  -i2 

which is negative for X I  +i2> 2 a  violating (2.8).  

( i i )  i I  = r > ,i2 = s. 

The lowest weight U( N )  state w = o ( A )  has 

W,+I = a +  1, W,+I = a, n ,  = O .  

For 

U : + ,  = a + 2 ,  w:+l = a +  1 ,  n ' , = 2 ,  

we obtain from (5 .15)  - -  
AR( U ' ,  U )  = 20 - r - s = 2 a  - A I  - A 2  

which is negative for X I  + x2 > 2a, again violating (2.8). 
Thus by theorem 2 we require i I + i 2 s 2 a  for unitarity as stated in theorem 1 .  
For a unitary representation, (5.18) is easily solved for K ,  as illustrated in Rowe 

? ( A )  = K U ' K - ' .  (5.20) 

(1984), to obtain the matrix elements of 

In particular, for multiplicity free states, (5.17) gives immediately 

(5.21) 

Thus, since AR is positive definite, by theorem 3, we obtain the analytic expression 

(0'11 y ( A ) l l w )  = [ A f l ( w ' ,  ~ ~ l i ' 2 ~ ~ ' l l ~ + l l ~ ~ .  (5.22) 
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Explicit analytic expressions for matrix elements were given previously (Castafios 
et a1 1984, Rowe er a1 1984, Deenen and Quesne 1984, Rowe 1985) for the a(0) class 
of Sp(3, R )  unirreps. We now extend them to any Sp( N, R )  unirrep of the form a( l a ) ,  
0 S a S N. These unirreps are all multiplicity free with states labelled uniquely by their 
U( N )  labels ( U )  with 

wi = a+ ni or w i = o + n i + l ,  i = 1,.  . . , N, 
where (n)  is a partition of even parts and ( w )  has a odd parts. Three kinds of matrix 
element occur 

(9 wi = a + n ,  U ;  = wi +2. (5 .23~)  

Since wi and w :  are both even, we require n:  = ni + 2 and (5.14) gives 

An(w’, w )  = 2 a +  ni - i +  1. 

(ii) m i = a + n i + l ,  w ;  = wi + 2. 

Again n j = n i + 2  and 

(5.23 b )  

(5 .24~)  

An(w’, w )  = 2 a +  ni - i+3.  (5.246) 

(iii) wi = a + n, + 1, 

w ;  = w,  + 1, 

wj = a + nj, 

w; = wj + 1, i # j .  ( 5 . 2 5 ~  1 

Since w j = a + ni + 2, it follows that n ;  = ni + 2 and 

AR(w’ ,w)=2a+nj - j+1 .  (5.256) 

Thus, the Sp( N,  R )  matrix elements for the a( 1 ” )  unirreps are obtained explicitly 
in terms of much simpler boson matrix elements by (5.22). The N = 3 boson matrix 
elements were evaluated for the a ( 0 )  unirreps by Quesne (1981) and for arbitrary a ( h )  
by Rosensteel and Rowe (1983). 

For arbitrary Sp(N, R )  unirreps, many of the states are multiplicity free and 
Sp(N, R )  matrix elements for such states are also given analytically by (5.22). The 
multiplicities are given by the branching rules of § 4. For example, for a (2)  and a z N, 
one has, by (3.10), 

( a (2 ) )=  ~ ~ ( { 2 } + { 4 } + { 2 ~ } + { 6 } + 2 { 4 2 } + .  . .), 
and one sees that the first multiplicity occurs for {42}, i.e. for ( U )  = (4+a ,  2 + a ,  
a,. . . , a).  

For any unirrep a(A), the stretched states ( U )  = ( A ,  +a+ n,, A Z + a l ,  h3+ a,. . .) are 
always multiplicity free. This is an important class of substates of major interest in 
the theory of nuclear collective motion (Arickx er a1 1979, Park er a1 1984). It is 
significant therefore that (5.22) gives analytic expressions for stretched matrix elements. 

It is worth remarking that the branching rules for compact Lie groups involve the 
formation of s k e w 3  functions (or equivalently S-function division) giving rise to a 
finite number of terms. In this paper we have presented what we believe is the first 
formulation of a branching rule for a non-compact group in terms of S-functions. In 
this case the S-functions appear as a non-terminating infinite sequence as would be 
expected for a non-compact group. 
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